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Similar estimates of temperature impacts on
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The potential impact of global temperature change on global crop yield has recently been assessed with different methods.
Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without
deliberate adaptation or CO, fertilization effects, produce similar estimates of temperature impact on wheat yields at global
and national scales. With a 1°C global temperature increase, global wheat yield is projected to decline between 4.1% and
6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China,
India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical
regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature
than cooler regions. By forming a multi-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model

uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

the middle of the twenty-first century'. Climate change,

and in particular rising temperatures, will impact food
production®. For global food security, it is important to understand
how climate change will impact crop production at the global scale
to develop fact-based mitigation and adaptation strategies. Many
studies have shown a wide range of temperature impacts on yields of
different crops in different seasons at different locations’, including
Europe?, China’, India® and sub-Saharan Africa’. A few studies have
considered impacts on the entire globe®'!. However, the methods
used to make these assessments are based on very different premises
and use different methodological steps.

The uncertainty of estimates of global temperature impact
on crop yields was analysed for the crop model component
(that is, model uncertainty) by using two different multi-model
ensemble approaches®’. While both studies used process-based crop
simulation models, the scaling approach and input data differed
greatly. The first study divided the globe into geographical grid
cells defined by latitude and longitude and used climate and crop
management data integrated over each grid as input for seven crop

G lobal demand for food is expected to increase 60% by

models’. This grid-based system was used to estimate relative yield
changes for rice, maize, wheat and soybean. The second study used
data from 30 individual field sites deemed to represent two-thirds
of wheat-producing areas worldwide®. In this point-based approach
estimates from sentinel sites were scaled up and extrapolated to
cover geographical areas with similar conditions.

In further contrast, statistical regressions based on global and
country-level data have been used to quantify the impact of
increasing temperatures on yields of wheat, maize, barley, soybean,
sorghum and rice'™''. An important difference from the simulation
models is that statistical models do not directly consider processes
inherent to crop growth. However, statistical models may include
indirect effects of climatic variability, such as those related to
pests and diseases, which are not well captured by simulation
models"?. When assessing climate effects on crop yields, crop models
can take into account autonomous adaptation and an increase in
atmospheric CO, concentration. Also some statistical regressions
include the yield effects associated with autonomous adaptation®.
For the effects of gradual increase in CO, concentration in the past,
statistical models may inherently include these within yield effects'?,

TA full list of affiliations appears at the end of the paper.
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Figure 1| Impacts of 1°C global temperature increase on global wheat yield
estimated by different assessment methods. The grid-based (0.5° x 0.5°
grid cells) method is an ensemble median from seven global gridded

crop models, averaged over 30 years and aggregated over all simulated
grid cells (after ref. 9). The point-based method is an ensemble median
from 30 models, averaged over 30 years and aggregated over 30 global
locations (after ref. 8). Regression_A is based on a country-level statistical
regression from ref. 10. Regression_B is based on a global-level statistical
regression from ref. 11. The error bars for the four different methods
indicate the 95% confidence intervals based on multi-model ensembles

in the simulations and bootstrap resampling in the statistical regressions.
The mean of the method_ensemble is shown with error bars indicating
the 95% confidence intervals based on medians of individual methods.

but for some regression models with a linear time term, effects of
steady increase in CO, can be removed from yield impacts, just
as the effects of technology improvement. In addition, upscaling
methods influence the outcomes from regional assessments'.
The statistical approach obtained global or regional impacts by
aggregating county districts or countries'®'. The grid-based system
obtained global or regional impacts by aggregating 0.5° x 0.5° grid
cells’, while the point-based approach employed 30 sites to represent
global wheat regions®. Therefore, differences in upscaling could add
uncertainties in the impact estimated in these studies.

In this letter, we compared three largely independent assessment
methods used to estimate temperature impacts on wheat yields:
grid-based simulations, point-based simulations, and statistical
regressions. The details of each method are shown in Supplementary
Table 1. The methods used independent different dynamic,
statistical, upscaling and source data approaches. The grid-
based simulations used here were from the Agricultural Model
Intercomparison and Improvement Project (AgMIP)"® as part of
the Inter-Sectoral Impact Model Intercomparison Project (ISI-
MIP). Wheat yields were simulated with seven global gridded crop
models during 1980-2099 under Representative Concentration
Pathway (RCP) 8.5, a greenhouse gas emissions scenario (here
without CO, fertilization effects), over 0.5° x 0.5° grid cells’. The
point-based simulations from the AgMIP-Wheat project® consisted
of simulations from 30 wheat models (including one statistical
model) for 30 representative locations around the world from a
baseline of the 1981-2010 period and a linear temperature increase.
Temperature impacts determined by statistical regression methods
were obtained directly from previously published data or our
own statistical analysis (Supplementary Table 1 and Supplementary
Methods).

Similar global impact from different methods
The average reductions in global wheat yield with 1°C global
temperature increase estimated from grid-based simulations,

point-based simulations, and statistical regressions at global level
were all between 4.1% and 6.4% (Fig. 1). The average estimated
temperature impact from all three methods (and four studies) was
a 5.7% reduction in global yield per degree of global temperature
increase. The estimated temperature effects on global wheat yield
from the three different methods were similar.

A meta-analysis of mostly process-based crop model simulations
reported a 3.3 = 0.8% decline in wheat yields with a 1°C increase
in local temperature’®. When adjusted to global temperature
change (which is usually less than local wheat region temperature
changes'”), this impact amounts to 3.9% vyield reduction per
degree of global temperature increase. Also, a summary of past
regression and simulation studies reported an average of 5.9%
wheat yield decrease with 1°C warming'®. These values are very
similar to the results obtained here for wheat using three different
assessment methods.

The results here are presented for 1°C of global warming
for consistency. However, the estimated impacts do not increase
linearly with increasing temperature and the disagreement among
method estimates become larger with more temperature change
(Supplementary Fig. 9).

Impacts for major wheat-producing countries

To understand how the different methods project such similar
temperature impacts on global wheat yields, we disaggregated
the temperature impacts to the national scale. Point-based and
grid-based simulations were compared for 97 countries (Fig. 2a).
Generally, projected temperature impacts on wheat yields for
most of the large wheat producers were similar between the
two simulation methods (with a R*> of 0.64 for the top 20
producers, Supplementary Fig. 12), while differences were larger for
small wheat-producing countries. Some large differences occurred
between point-based and grid-based simulation in irrigated
semiarid regions of Africa, which are mostly small wheat producers.
The larger differences observed for smaller producers have little
weight in the global analysis. However, they are important for
regional economies. Method results were compared in more detail
for the top five wheat-producing countries (Fig. 2b and Fig. 3). For
China, India, USA and France, the different assessment methods
resulted in similar values for temperature impacts on country wheat
yields. Additional country-level studies relying on other methods
and data sources gave similar estimates. For example, for China,
point-based simulations, grid-based simulations, and two different
regressions all concluded that yield reductions of about 3.0% are
expected with 1°C warming (Fig. 3a). For India, country-level
statistical regressions, grid-based and point-based simulations all
estimated about 8.0% yield declines per 1°C of global temperature
increase (Fig. 3b). For Russia, the two simulation methods agreed
well, but yield reductions estimated from statistical regression were
markedly higher (Fig. 3c). Another study using statistical regression
methods also showed higher negative temperature impacts on wheat
yield than the two modelling methods used here for Rostov, a main
wheat-producing region in Russia'. Since wheat-producing regions
in Russia can experience relatively low temperatures (below optimal
growth temperature) during early growing stages, a temperature
increase during this stage (tillering) may have a positive yield
impact, while at a later stage (booting or grain filling) an increase in
temperature often reduces wheat yields'. As an average temperature
over a growing season is usually used in statistical regressions,
such in-season variability in temperature impacts would remain
undetected. A dynamic crop simulation model takes in-season
variability and impacts into account. This may explain the estimated
larger impacts in Regression_A in comparison with the simulation
results. For the USA, a recent study using data from wheat variety
trials from 1985 to 2013 in Kansas, USA reported a 7.3% decrease
(corrected for global temperature change) in wheat yield with
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Figure 2 | Comparison of wheat yield changes with 1°C global temperature increase for 97 wheat-producing countries estimated using three different
methods. a, Median simulations of a grid-based (0.5° x 0.5°) ensemble of seven models (after ref. 9) versus a point-based (30 locations over 30 years)
ensemble of 30 models (after ref. 8). b, Country-level statistical regression for China, India, USA, France and Russia, the top five wheat-producing
countries, from ref. 10, versus point-based simulations for these countries (after ref. 8). Note, only data on these five countries were supplied in ref. 10.
Circle colour indicates the wheat growing season temperature (from ref. 10). Circle size indicates the amount of wheat production for each country
according to FAO statistics?3. The solid line is the 1:1 line and dashed lines represent 0% yield change.

1°C global temperature increase®. This result is similar to the
other estimated temperature impacts on wheat yields for the USA
(Fig. 3d). For France, yield reduction estimates from grid-based
simulations, point-based simulations, and statistical regressions
were 4.6%, 5.2% and 4.2%, respectively (Fig. 3e). In an independent
study, a 0.42 tha™' reduction in wheat yields, which is a reduction
of about 5.5% after correction for global temperature change, was
reported in northern France from 1998 to 2008 that included the
planting of reference varieties in field experiments®. This is also
in line with simulated impact response surfaces from a 26-wheat-
model ensemble across a European transect?.

With the different temperature impact methods used, despite
some variation, there is a general similarity in the magnitude of
negative effects of increasing temperature on wheat yields for major
wheat-producing countries. As the five largest wheat-producing
countries have a combined total >50% of total global wheat
production®, the similarity in method estimates of temperature
impacts for these countries also dominates the similar negative
temperature impacts computed at the global scale.

Differences in model inputs

At the location scale, the yields from the point-based simulations
were highly correlated to the yields from the grid-based simulations
for the baseline and baseline +1°C periods (P < 0.001, R* >
0.5; Supplementary Table 2), but simulated yields were generally
higher in point-based than in grid-based simulations (Fig. 4 and
Supplementary Fig. 1). The average yields of the 30 locations in the
point-based simulations were 3.2 (82%) and 3.0 (82%) tha™" higher
than in the corresponding grid-based simulations under baseline
and baseline +1 °C conditions, respectively. In both studies, mean
temperatures were similar across sites for the 90 days period prior to
maturity, except for three locations (Supplementary Fig. 2). Seasonal
temperature variability in the model input data differed slightly
between methods and caused a larger seasonal yield variability
in the grid-based simulations compared with the point-based
simulations (Supplementary Fig. 7). Solar radiation inputs were 5%
to 7% lower in the grid-based than in the point-based simulations
(Supplementary Fig. 3), which might have contributed slightly to
the simulated vyield difference®. Water stress was not considered
in either study for the comparison of these 30 locations and any
possible differences in precipitation inputs had no impact on the

simulated results (Supplementary Table 3). No nitrogen stress was
assumed in the point-based simulations, but four of the seven crop
models in the grid-based simulations did consider country-level
average N fertilizer application, which could explain why the grid-
based model ensemble simulated generally lower yields compared
with the point-based simulations (Supplementary Table 3).
Another important factor possibly contributing to yield
differences between the grid-based and point-based simulation
at the local scale was the models used in the studies. There were
29 crop models and one statistical regression in the point-based
simulation ensemble, whereas there were seven crop models in the
grid-based simulations. Three models (CERES, EPIC and LPJmL)
were common to both studies. These three models tended to
simulate lower yields than the 30-model ensemble average from the
point-based study for the 30 locations, for example, about 0.9 tha™
less in the baseline period (Supplementary Fig. 4). This may have
lowered the average simulated yields in grid-based simulations.
Differences in the calibration of the crop models would also affect
simulations®. Some models in the grid-based simulations were
calibrated and some were not, and especially growing periods were
not harmonized across grid-based models’, while in point-based
simulations all models were calibrated for anthesis and maturity
dates with local phenology information®. Hence, differences in
models, solar radiation and inputs such as N fertilizer may explain
some of the lower yields found in the grid-based studies. Differences
in cultivar calibration, particularly for phenology and growing
season, add another source of differences between these two studies.

More yield reduction at warmer regions

Interestingly, when comparing the grid-based and point-based
simulations, no obvious bias was observed in the simulated relative
yield impacts between point-based and grid-based simulations
(Fig. 4c and Supplementary Fig. 1c), even though simulated absolute
yields with point-based simulations were much higher than grid-
based simulations. This was still true when the outlier location
in Fig. 4c was removed from calculations. Temperature impacts
at the local scale in grid-based and point-based simulations were
highly correlated. With 1°C global temperature increase, higher
yield reductions were observed at locations with higher baseline
temperatures than locations with lower baseline temperatures in
both point-based and grid-based simulations (Fig. 4c). For example,
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Figure 3 | Estimated impacts of 1°C global temperature increase on wheat yield. a-e, China (a), India (b), Russia (¢), USA (d) and France (e) using
different assessment methods. The grid-based (0.5° x 0.5°) method produced an ensemble median from seven global gridded crop models (after ref. 9).
The point-based method produced an ensemble median from 30 models from 1to 3 country locations (after ref. 8). Regression_A is a statistical regression
based on country statistics after ref. 10. Regression_C is a statistical regression based on 0.5° x 0.5° grid statistics after ref. 45. Regression_D is
county-level statistical regressions produced by two different regression methods from ref. 49. Regression_E is a county-level regression produced for this
study. The error bars indicate the 95% confidence interval based on multi-models for the simulations and bootstrap resampling (Regression_A,
Regression_B, and Regression_D) or t-tests (Regression_E) for the statistical regressions. No error bar was provided for Regression_C in ref. 45.

at Aswan in Egypt, point-based and grid-based simulations showed
about 11% and 20% decline in yield with 1°C temperature
increase, while for Krasnodar in Russia, point-based and grid-
based simulations estimated about 4% and 7% yield decline with
1°C global increase. The spatial pattern of temperature impacts
at the location scale was also consistent with that at the country
scale (Fig. 2a,b, and Supplementary Fig. 11), which indicated that
warmer regions (for example, India) are likely to suffer more wheat
yield reductions than cooler regions (for example, China). The
exception is for statistical regression estimates for Russia, a generally
cooler region (Fig. 2b). The effects of temperature on wheat yields
are consistent with reports of impacts on other crops, such as
maize, soybean and cotton®***. An increase in extreme temperature
events with increasing mean temperatures® is likely to further
contribute to yield decline in wheat***!. Several crop models used
in point-based simulations (tested against warming experiments)
and Regression_A (using a nonlinear regression method) also
considered the impacts of extreme temperature®'.

Effects of upscaling methods

To assess climate impacts on global or country-level crop
production, both process-based crop modelling approaches and
statistical regressions need to be upscaled from locations to regions
and then to the entire globe®. In the point-based simulations, a
range of local information (for example, local sowing dates, cultivar,
anthesis and maturity date) was used for the 30 locations selected
to represent about 70% of current global wheat production, which
was then upscaled via FAO (Food and Agriculture Organization

of the United Nations) statistics®. Much less local information was
available for each of the 0.5° x 0.5° grid cells which were aggregated
to country and global scales in the grid-based simulations’.
However, very similar estimated temperature impacts on relative
global yield changes were simulated with both approaches. This was
surprising as it was shown that scaling methods can add significant
uncertainties to simulated outcomes'. Although uncertainties are
known to be reduced with multi-model ensembles, these results
might also indicate that the selected 30 locations in the point-based
study® were indeed representative of agro-climatic variability of
wheat-growing conditions throughout the world. The results also
suggest that global grid-based models, despite having limited local
information, are on a par with point-based approaches, while
providing greater coverage of regional heterogeneity.

In the statistical regression methods, yield and weather data
from different scales were used to obtain global and country-level
temperature impacts. For example, both global'' and country-level™
regressions, observed yield records were used to conduct global
assessments, and both country-level yields and county (or similar)-
level yields were used for country assessments (for example, for
China, India and USA). Generally, regressions with different spatial
scales resulted in similar temperature impacts on yields.

Advantage of different assessment methods

Compared with process-based crop models, statistical regressions
are simpler and require less input information. However, other
important growth factors that change with climate change, such
as radiation or the combined effects of heat, water and nutrient
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Figure 4 | Comparison of simulated multi-model median wheat yield and yield changes. a-c, Absolute wheat yields for baseline (a) and baseline +1°C
(b) periods, and relative yield change with 1°C global temperature increase from grid-based simulations (0.5° x 0.5°) (from ref. 9) of cells centred around
the 30 locations from the point-based study versus that from the point-based simulations (from ref. 8) (¢). Note in ¢, the regression line is drawn without

the outlier (location in Sudan). Dashed lines represent regression lines.

stresses, vary over the period of a crop growing cycle, but are
often not directly considered in statistical regressions. Some of
these factors might also be confounded in a statistical regression
analysis. While there have been attempts to include more factors
in statistical impact methods®, detailed process-based, dynamic
crop simulation models may be more suitable to simulate the more
complex climate change scenarios, beyond the single impact of
temperature change. However, process-based models, like statistical
methods, often do not account for many other important factors
required for holistic climate change impact assessment. Such factors
include impacts from frost, pests, weeds, diseases and floods, and
also dissimilar impacts between day and night temperatures™, or
extreme temperature events at different growth stages, which are
all likely to change with future climates. However, process-based
models are capable of accounting for the effects of elevated CO,
(ref. 35), even though this effect is not considered here, but large
uncertainties exist not only with respect to the general effects on
crop yields®® but also with respect to model implementation®.

Field or environment-controlled experiments are independent
ways to estimate temperature impacts on wheat yields*'®. For
example, 2% to 8% reductions in wheat yield for every 1°C
increase of post-anthesis temperature above an optimum season-
average temperature of 15 °C (that is, local temperature) have been
measured for a range of cultivars under controlled®” and field
experiments*. Considerable variations of wheat yield impacts with
increasing temperature have been found in a four-growing-season
warming experiment*. However, while measured temperature
impacts on yields can guide other impact estimation methods, they
are often specific to a particular location, cultivar, crop management
or experimental treatment and are not representative of a larger
region, which makes it difficult to extrapolate such measurements
to regional or global impacts.

Applying multi-method ensembles

Understanding and quantifying uncertainty of impact assessments
has been a key aspect in assessing climate impacts on crop
production in recent studies’***. Most previous studies have
focused on uncertainties arising from crop models or climate
models”. Here the uncertainties in both point-based and grid-
based simulations were quantified by multi-model ensembles.
Uncertainties due to crop models, expressed as error bars in
the grid-based simulations, were relatively large at both global
and country scales (Figs 1 and 3), which was due to the
limited number of models and relatively wide spread of model
results in this study. The differences in model inputs (for
example, nitrogen application, sowing dates, cultivars), calibration
methods and model’ explain some of the variability between
the point- and grid-based simulations. Many crop models do

not simulate temperature interactions with canopy temperature
variation under different soil water conditions, which could result
in simulated differences of temperature impacts®. However, multi-
model ensemble medians have been shown to be more consistently
accurate than individual models when comparing measurements
across locations and growing environments, adding confidence to
the estimates here*!. Bootstrap resampling methods were employed
to estimate the uncertainty of temperature impacts calculated
in the two global-scale statistical regressions. Thus, different
assessment approaches have independent methods of quantifying
uncertainty. Multi-method ensembles can enable the quantification
of method uncertainty, similar to how multi-model ensembles
enable estimation of model uncertainty. The uncertainty range of
wheat yield reduction with 1°C global temperature increase from
the multi-method ensemble calculated from the median of the four
methods analysed here was between 4.0% and 6.9% at the global
scale (95% confidence interval). While this absolute difference is still
substantial, this is narrower than the uncertainty due to the models
in the multi-model ensembles from the simulations or the boot-
strapping method in the statistical regressions. Therefore, applying
multi-method ensembles can improve reliability of the assessment
of climate impacts on global food security.

However, the consistency of negative global yield impacts of
increasing temperature quantified here at the global level should
not be applied to the local or regional scale. As previous studies
have found, there were considerable large variations of increasing
temperature impacts on wheat yields at the local and regional
scale®, and the spatial variation of temperature impacts has
also been observed in the two modelling approaches here among
different locations.

Adaptation to global warming, for example, farmer’s autonomous
adaptation through changing sowing dates or cultivars, has been
suggested in several studies to compensate negative impacts
of increasing temperature®. At the global scale, point-based
simulations did not consider adaptation. Also a panel regression
approach attempted to exclude adaptations®. In the grid-based
simulations, four of the seven models did allow cultivar and sowing
date adaptation with a changing climate (Supplementary Table 3),
and the simulated impacts tended to be lower with simulated
adaptation (Supplementary Fig. 10). However, temperature impacts
from models with adaptation varied largely. Temperature impacts
with and without adaptation were estimated from different models
in grid-based simulations, which added considerable uncertainty
in the results. The adaptation effects on temperature impacts
should be further studied with more consistent protocols for multi-
model assessments. Other future adaptation, for example, wheat
cultivation shifting to marginal regions in higher latitudes, could
offset some of the negative impacts.
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Assessing climate change impacts on crop production is a key
aspect in determining appropriate global food security strategies*.
Reliable estimates of climate change impacts on food security
require an integrated use of climate, crop and economic models'.
Applying multi-method ensembles further improves the estimated
impact precision and confidence in assessments of climate impacts
on global food security. The consistent negative impact from
increasing temperatures confirmed by three independent methods
warrants critical needed investment in climate change adaptation
strategies to counteract the adverse effects of rising temperatures
on global wheat production, including genetic improvement and
management adjustments***. However, some or all of the negative
global warming impacts on wheat yield might be compensated by
increasing atmospheric CO, concentrations under full irrigation
and fertilization™.

Methods

Methods and any associated references are available in the online
version of the paper.
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Methods

Grid-based simulations. Seven global gridded models simulated 0.5° x 0.5° grid
cells across all wheat-growing regions of the world from 1980 to 2099 under a
RCP 8.5 scenario with a statistically downscaled version of HadGEM2-ES™, with
only a small trend in solar radiation at some locations (Supplementary Fig. 6).
Here, a set of simulation experiments without effects of elevated CO, and under
full irrigation treatments were used. Among the seven global gridded models,
adaptation through cultivars, sowing dates or growing season had been employed
in four of the models (Supplementary Table 3). The global yield impacts from
models with and without adaptation are compared in Supplementary Fig. 10. Only
one climate model and RCP were used as there were limited data available for
grid-based simulations. The period 2029-2058 was selected as being on average
2°C warmer globally than the baseline period of 1981-2010 and the impact was
halved to adjust the temperature change to 41 °C for the analysis here. The
temperature change considered here is 1 °C warming of the global mean
temperature, including land and ocean surface. The change in simulated grain
yields between these two temperature periods was used to estimate temperature
impacts on wheat at global and national scales. Grid-based simulations for the
direct comparison with point-based simulations were extracted from simulations
assuming full irrigation. For national- and global-scale results, grid-based
simulations were aggregated by area-weighted means, using rain-fed and irrigated
wheat areas per pixel of MIRCA2000 (ref. 49) combining simulations under
irrigated and rain-fed conditions. To make projections between the different
grid-based models comparable, yield simulations were bias-corrected to national
FAO levels by using FAO mean yields and superimposing projected relative
changes. More details about the grid-based simulations can be found in ref. 9.

Point-based simulations. Thirty models, 29 crop simulation models and one
statistical regression model, were used to simulate wheat grain yields for 30
representative locations in high-rainfall and irrigated wheat-growing regions
around the world (together representing about 70% of global wheat production)
with the estimated baseline period of 1981-2010 and baseline +2 °C. Three models
(CERES, EPIC and LPJmL) in point-based simulations were used in grid-based
simulations. No CO, fertilization effects or any adaptation was considered in the
point-based simulations. The impact was halved to adjust the temperature change
to 41 °C for the analysis here. Local temperature impacts on yields were adjusted to
global temperature change and upscaled via FAO statistics. Temperature impacts
on national scales were assessed for 97 countries. Each country was assigned as
being similar to one or more representative locations, so the temperature impacts
of each country were the average impacts of the corresponding representative
locations. More details can be found in ref. 8.

Statistical regressions. All estimated temperature impacts from statistical
regressions were from literature reports'®'"*>*!, except for one new statistical
regression analysis for the USA that we present here (Supplementary Methods). All
temperature impacts were adjusted to global temperature change following the

approach by ref. 8. Details of these regression studies and impacts adjustments are
summarized in Supplementary Table 1.

Meta-analysis and experimental data. Meta-analysis and experimental data from
the literature are cited here for further comparison after adjusting them to global
temperature change where possible. Meta-analysis and experimental data from the
literature were cited here for further comparison after adjusting them to global
temperature change. An adjustment factor to global temperature used for the
statistical regressions was also used here. The temperature factors are listed in
Supplementary Table 1.

Comparison at a national scale. Temperature impacts for 97 countries from both
grid-based and point-based simulations were compared. Due to the limited number
of country-scale estimates of temperature impacts on wheat yields with statistical
regression analysis, we compared the regression results with the two simulation
approaches for the top five wheat-producing countries (Supplementary Table 1).

Comparison at local scales. Yield simulations from 30 single grid cells from the
grid-based method were chosen that were centred around the 30 global
representative locations from the point-based method. Full irrigation treatments
were applied in point-based and grid-based simulations. The baseline and
increased temperature periods for the 30 grid cells were determined individually by
matching the 30-year average annual temperature of each grid to the 30-year
average annual temperature of the corresponding location from point-based
simulations. The baseline and increased temperature periods for each of the 30 grid
cells and temperature differences between the two methods are shown in
Supplementary Table 4. Most locations had very similar temperature input data in
the two comparison periods for grid-based and point-based simulations. Outliers
(Supplementary Table 4) were found where the input data differed substantially but
these did not cause outliers in yield impacts. The yield impact outlier at the Sudan
location was caused by very low simulated yields (Fig. 4). The simulated yields for
baseline and increased temperature periods were used to calculate temperature
impacts at the local scale. These were also adjusted to global temperature change
with the same method at global and national scales. The temperature and radiation
data from the critical growing period of wheat from 90 days before maturity to
maturity were compared. Maturity dates were the dates supplied from observations
for each location in the point-based method®.
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